Lithium Metal Electrode Understanding Its Unique Characteristics and Functions

Boryann Liaw, Eric J Dufek, Gorakh M Pawar

March 2020

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Lithium Metal Electrode Understanding Its Unique Characteristics and Functions

Boryann Liaw, Eric J Dufek, Gorakh M Pawar

March 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Idaho National Laboratory

Lithium Metal Electrode — Understanding Its Unique Characteristics and Functions

Gorakh Pawar, Yulun Zhang, Qiang Wang, Eric J. Dufek, Boryann Liaw*

Energy and Environmental Science and Technology Idaho National Laboratory Idaho Falls, ID 83415, USA

Xuefeng Wang, Yejing Li, Minghao Zhang, Bingyu Lu, Abhik Banerjee, Ying Shirley Meng*

Department of NanoEngineering University of California San Diego La Jolla, CA 92093, USA

Congratulations

The Nobel Prize in Chemistry 2019

III. Niklas Elmehed. © Nobel Media.

John B. Goodenough

Prize share: 1/3

III. Niklas Elmehed. © Nobel Media.

M. Stanley

Whittingham

Prize share: 1/3

III. Niklas Elmehed. © Nobel Media.

Akira Yoshino

Prize share: 1/3

MLA style: The Nobel Prize in Chemistry 2019. NobelPrize.org. Nobel Media AB 2019. Sun. 13 Oct 2019.

https://www.nobelprize.org/prizes/chemistry/2019/summary/>

Remember the Pioneers

Carl Wagner in 1970's

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5090311/

Bob in 1980's

https://profiles.stanford.edu/robert-huggins

and, many others...

Make the Rechargeable Li Battery Great Again

1900

Matsushita's Li primary cell 1972

Moser's solid Li-I cell 1972

Sony's Li-ion battery cell 1991 Pushing the limits 2019 ——

1800

Baghdad battery 150 BC - 640 AD

Leclanché cell 1866 Whittingham's organic rechargeable Li battery (RLB) 1977

Armand's polymer electrolyte RLB 1978

2000

Tesla Model 3 2018

Conventional Approach

Battery Failure Analysis to Life Prediction

Thermodynamic Attributes:

Physical Principles – < Quantitative validation > pplication **Battery Design** Knowledge **Objectives** Integration **Empirical** Observations – < Qualitative or semiquantitative correlations >

Li Stripping & Deposition – A Perspective

 Challenging issues for rechargeable Li batteries with high-energy density and higher cycle life

Dendrite

- Fundamental mechanisms unclear
- Boundary condition is difficult to define

Localized Effects

Uncontrollable

experimental

parameters

Layla, et al. Scientific reports 6 (2016)

Shasha, et al. Nature communications 9.1 (2018): 2152

A dense Li deposition is needed

Li, Nano Energy 32 (2017): 241-246.

Solid Electrolyte Interphase

- Lithium

 Li, O LiF

 Ligo Life

 Carbon

 Li, O Life

 Life

 Ligo Life

 Life
- Complex phenomena
- Difficult to characterize

Peled, Journal of The Electrochemical Society 164.7 (2017): A1703-A1719

Morphology & Porosity

- Variability in morphology
- Undesirable effects

Li metal

Cryo-TEM Observations on Li Deposition

- Morphology of LME depends on current density and duration
- Amorphous Li (a-Li) was found !
- Lower the current density more a-Li found!

Understanding of Reaction Kinetics via Reactive MD Simulation — Nucleation

Transition to crystalline (bcc) structure Coarsening & condensation Nuclei canonical t = 0.05 nsEmbryo transformed 1500 Li into crystalline (bcc) structure atoms 1200 Li Embryo remained in 'amorphous'

The r-MD simulation suggests:

- Reaction kinetics of nucleation is sensitive to Li embryo size, which is related to current density and duration
- Below a threshold size the Li deposit is an aggregate of Li in a disordered state amorphous phase or a-Li
- There is an amorphouscrystalline (a-Li to c-Li) transition and incubation
- The threshold size is 2-3 nm

Temporal Evolution of Bulk Microstructure

A systematic understanding can enable the identification of kinetic pathways that affects cycle life

Understanding of Reaction Kinetics via Reactive MD Simulation — Growth

Surface morphology and bulk properties

Rate Dependent Surface Morphology and Bulk Properties

Higher deposition rates profoundly impact lithium metal surface and bulk lithium metal characteristics

Multi-Scale Fidelity and Reality

 What governs this multi-scale phenomena is kinetics and the associated energy-transfer process—not thermodynamics.

Using Li metal electrode (LME) as a case study

Micro-scale Meso-scale Macro-scale Nano-scale

Real-life-scale

Cycle Life in Li || NMC Cells

- Consistency in 14 cells offers an excellent basis for eCAD
- Complete life cycle revealed from Good to Bad and Ugly
- Full analysis on failure mechanism to identify every single attribute to capacity fade
- Quantitative results for all capacity fade attributes
- Uncover and quantify Loss of Li Inventory (LLI) for charge and discharge regime, respectively, which does not appear in charge retention measurements
- Life prediction for individual cell

Cell Qualification vs. Statistical Analysis

State of Charge (SOC)-based Performance Analysis

 Remove bias from experimental conditions to reveal true SOC correspondence — Separate thermodynamic and kinetic attributes

Cycle Life in Li || NMC Cells

Cycle life sensitively depends on Li inventory

Relate Failure Modes to Li Anode Morphology

Conclusion

- Li metal electrode comes a long way to practical applications
- Multi-scale understanding of the kinetics by experiments and model simulations
- Unlock the mystery of Li stripping and deposition with better control of kinetics

To Bob Huggins

- Happy the 90th B-day!
- Thank you for great mentoring and guidance !!

Acknowledgements

- PNNL Jun Liu, Jason Zhang, Jie Xiao, Wu Xu, Xiaodi Ren
- UC Irvine Materials Research Institute (IMRI) for the use of Cryo-Electron Microscopy Facility and Kratos XPS